

KISS: A Bit Too Simple

Greg Rose ggr@qualcomm.com

Outline

- ☐ KISS random number generator
- Subgenerators
- ☐ Efficient attack
- ☐ New KISS and attack
- Conclusion

One approach to PRNG security

"A random number generator is like sex:

When it's good, its wonderful;

And when it's bad, it's still pretty good."

Add to that, in line with my recommendations

on combination generators;

"And if it's bad, try a twosome or threesome."

-- George Marsaglia, quoting himself (1999)

KISS – a Pseudo-Random Number Generator

- ☐ "Keep it Simple Stupid"
- Marsaglia and Zaman, Florida State U, 1993
- ☐ Marsaglia posts C version to sci.crypt, 1998/99, took off
- Never said it was secure!
 - ➤ Good thing, too...
 - > But others seem to think it is.

```
#define znew (z=36969*(z&65535)+(z>>16))
#define wnew (w=18000*(w&65535)+(w>>16))
#define MWC ((znew<<16)+wnew )
#define SHR3 (jsr^=(jsr<<17), jsr^=(jsr>>13),
    jsr^=(jsr<<5))
#define CONG (jcong=69069*jcong+1234567)
#define KISS ((MWC^CONG)+SHR3)</pre>
```


KISS diagram

Multiply With Carry subgenerator

- □ znew and wnew
- ☐ 16 bits "random looking", 32 bits of state
- ☐ Multiply by constant (18000, 36969 resp), add carry from previous multiplication
- \square Periods about $2^{29.1}$ and $2^{30.2}$ two long cycles each
- ☐ Two bad values (o and something else) repeat forever
- ☐ Large states go into smaller ones after one update
- □ *znew* only affects high order bits.

Linear Congruential subgenerator

- ☐ Well studied, period 2³², single long cycle
- ☐ Low order bits form smaller linear congruential generators
- ☐ In particular, LSB goes "01010101010..."

3-Shift Register subgenerator

- ☐ Linear, but not like LFSR
- ☐ Authors assume long period, but wrong
- ☐ LSBs of output form one of 64 LFSRs
- \square Periods range from 1 to $2^{28.2}$ (not 2^{32} -1!)
- ☐ Can recover initial state from 32 consecutive LSBs easily
 - > Binary matrix multiplication

Attack idea

- ☐ Divide and Conquer
 - Registers are updated independently of each other, then combined
 - > So try to get rid of effects of one or more registers
 - One of them is already partly gone!
- ☐ Exploit weaknesses (eg. Linearity of SHR3, low order bits of CONG)
- Guess and Determine
 - > Guess (that is, try all possibilities) for some values, then
 - Derive other values
 - Verify whether still consistent

What do we know at the start?

Guess wnew

Guess LSB of *CONG* (01010... or 10101...)

Determine LSB sequence from SHR3

Verify LSB sequence from SHR3 is LFSR

Determine half of *CONG*

Guess top half of CONG

Determine low half of znew

Determine high half of znew from low half

And verify...

How much work?

- □ Dominated by trying, on average, 589,823,999 values for wnew
- ☐ And for each one, using Berlekamp-Massey algorithm to check whether the candidate for *SHR*3 is LFSR
 - ➤ Alternatively, can check parity equations.
- ☐ Few hours on laptop.

Newer KISS

- ☐ Sci.crypt 2011 posting by Marsaglia
- ☐ Looking for longer and longer cycles
- ☐ Period > 10^{40,000,000}
- ☐ State is ridiculously large (2²²+3 32-bit words)
- ☐ Again combines multiple components "for security"

New KISS

```
static unsigned long Q[4194304], carry=0;
unsigned long b32MWC (void)
{unsigned long t,x; static int j=4194303;
j = (j+1) & 4194303;
x=Q[j]; t=(x<<28)+carry;
carry=(x>>4) - (t<x);
return (Q[j]=t-x);
\#define CNG (cng=69069*cng+13579)
#define XS ( xs^=(xs<<13), xs^=(xs>>17), xs^=(xs<<5) )
#define KISS ( b32MWC()+CNG+XS )
```

Complemented Multiply With Carry

- ☐ Large circular buffer with carry variable
- Extremely long period
- ☐ State values are used directly for output
- Can be run backward
- ☐ After one rotation through buffer, can check consistency easily (used in attack)
- ☐ By itself has no cryptographic strength at all
 - output is state

Attack on New KISS

- ☐ Simple divide and conquer
- ☐ Guess state of CONG and SHR3
- □ Run generator forward slightly more than a full rotation of b32MWC's buffer
- ☐ If 3 outputs are mutually consistent, must have guessed correctly
- ☐ Run backward to recover full initial state
- \square Equivalent to 2^{63} key setup operations
 - > But the key is huge, so is the key setup operation

Conclusion

- M & Z overestimated the period by about a factor of 10
- ☐ KISS is not secure
- ☐ Need about 70 words of generated output
- ☐ Can apply attack to unknown (but biased) plaintext
 - ➤ Replace B-M step with fast correlation attack
 - > Still surprisingly efficient
- □ Don't use KISS if you need security!

