
KISS: A Bit Too Simple

Greg Rose

ggr@qualcomm.com

PAGE 2

Outline

 KISS – random number generator

 Subgenerators

 Efficient attack

 New KISS and attack

 Conclusion

PAGE 3

One approach to PRNG security

"A random number generator is like sex:

When it's good, its wonderful;

And when it's bad, it's still pretty good."

Add to that, in line with my recommendations

on combination generators;

"And if it's bad, try a twosome or threesome.”

-- George Marsaglia, quoting himself (1999)

PAGE 4

KISS – a Pseudo-Random Number Generator

 “Keep it Simple Stupid”

 Marsaglia and Zaman, Florida State U, 1993

 Marsaglia posts C version to sci.crypt, 1998/99, took off

 Never said it was secure!

 Good thing, too…

 But others seem to think it is.

#define znew (z=36969*(z&65535)+(z>>16))

#define wnew (w=18000*(w&65535)+(w>>16))

#define MWC ((znew<<16)+wnew)

#define SHR3 (jsr^=(jsr<<17), jsr^=(jsr>>13),

jsr^=(jsr<<5))

#define CONG (jcong=69069*jcong+1234567)

#define KISS ((MWC^CONG)+SHR3)

PAGE 5

KISS diagram

w

n

e

w

z

n

e

w
M

W

C

S

H

R

3

C

O

N

G

K

I

S

S

++

+



PAGE 6

Multiply With Carry subgenerator

 znew and wnew

 16 bits “random looking”, 32 bits of state

Multiply by constant (18000, 36969 resp), add carry
from previous multiplication

 Periods about 229.1 and 230.2 – two long cycles each

 Two bad values (0 and something else) repeat forever

 Large states go into smaller ones after one update

 znew only affects high order bits.

PAGE 7

Linear Congruential subgenerator

Well studied, period 232, single long cycle

 Low order bits form smaller linear congruential
generators

 In particular, LSB goes “01010101010…”

PAGE 8

3-Shift Register subgenerator

 Linear, but not like LFSR

 Authors assume long period, but wrong

 LSBs of output form one of 64 LFSRs

 Periods range from 1 to 228.2 (not 232-1!)

 Can recover initial state from 32 consecutive LSBs easily

 Binary matrix multiplication

PAGE 9

Attack idea

 Divide and Conquer

 Registers are updated independently of each other, then
combined

 So try to get rid of effects of one or more registers

 One of them is already partly gone!

 Exploit weaknesses (eg. Linearity of SHR3, low order bits
of CONG)

 Guess and Determine

 Guess (that is, try all possibilities) for some values, then

 Derive other values

 Verify whether still consistent

PAGE 10

What do we know at the start?

w

n

e

w

z

n

e

w
M

W

C

S

H

R

3

C

O

N

G

K

I

S

S

++

+



Determined

Now known

Guessed

PAGE 11

Guess wnew

w

n

e

w

z

n

e

w
M

W

C

S

H

R

3

C

O

N

G

K

I

S

S

++

+



Determined

Now known

Guessed

PAGE 12

Guess LSB of CONG (01010… or 10101…)

w

n

e

w

z

n

e

w
M

W

C

S

H

R

3

C

O

N

G

K

I

S

S

++

+



Determined

Now known

Guessed

PAGE 13

Determine LSB sequence from SHR3

w

n

e

w

z

n

e

w
M

W

C

S

H

R

3

C

O

N

G

K

I

S

S

++

+



Determined

Now known

Guessed

PAGE 14

Verify LSB sequence from SHR3 is LFSR

w

n

e

w

z

n

e

w
M

W

C

S

H

R

3

C

O

N

G

K

I

S

S

++

+



Determined

Now known

Guessed

PAGE 15

Determine half of CONG

w

n

e

w

z

n

e

w
M

W

C

S

H

R

3

C

O

N

G

K

I

S

S

++

+



Determined

Now known

Guessed

PAGE 16

Guess top half of CONG

w

n

e

w

z

n

e

w
M

W

C

S

H

R

3

C

O

N

G

K

I

S

S

++

+



Determined

Now known

Guessed

PAGE 17

Determine low half of znew

w

n

e

w

z

n

e

w
M

W

C

S

H

R

3

C

O

N

G

K

I

S

S

++

+



Determined

Now known

Guessed

PAGE 18

Determine high half of znew from low half

w

n

e

w

z

n

e

w
M

W

C

S

H

R

3

C

O

N

G

K

I

S

S

++

+



Determined

Now known

Guessed

PAGE 19

And verify…

w

n

e

w

z

n

e

w
M

W

C

S

H

R

3

C

O

N

G

K

I

S

S

++

+



Determined

Now known

Guessed

PAGE 20

How much work?

 Dominated by trying, on average, 589,823,999 values for
wnew

 And for each one, using Berlekamp-Massey algorithm to
check whether the candidate for SHR3 is LFSR

 Alternatively, can check parity equations.

 Few hours on laptop.

PAGE 21

Newer KISS

 Sci.crypt 2011 posting by Marsaglia

 Looking for longer and longer cycles

 Period > 1040,000,000

 State is ridiculously large (222+3 32-bit words)

 Again combines multiple components “for security”

S

H

R

3

+

C

O

N

G

b32MWC (222 words)

PAGE 22

New KISS

static unsigned long Q[4194304],carry=0;

unsigned long b32MWC(void)

{unsigned long t,x; static int j=4194303;

j=(j+1)&4194303;

x=Q[j]; t=(x<<28)+carry;

carry=(x>>4)-(t<x);

return (Q[j]=t-x);

}

#define CNG (cng=69069*cng+13579)

#define XS (xs^=(xs<<13), xs^=(xs>>17), xs^=(xs<<5))

#define KISS (b32MWC()+CNG+XS)

PAGE 23

Complemented Multiply With Carry

 Large circular buffer with carry variable

 Extremely long period

 State values are used directly for output

 Can be run backward

 After one rotation through buffer, can check consistency
easily (used in attack)

 By itself has no cryptographic strength at all

 output is state

PAGE 24

Attack on New KISS

 Simple divide and conquer

 Guess state of CONG and SHR3

 Run generator forward slightly more than a full rotation
of b32MWC’s buffer

 If 3 outputs are mutually consistent, must have guessed
correctly

 Run backward to recover full initial state

 Equivalent to 263 key setup operations

 But the key is huge, so is the key setup operation

PAGE 25

Conclusion

M & Z overestimated the period by about a factor of 10

 KISS is not secure

 Need about 70 words of generated output

 Can apply attack to unknown (but biased) plaintext

 Replace B-M step with fast correlation attack

 Still surprisingly efficient

 Don’t use KISS if you need security!

